The variety of modal FLew-algebras is generated by its finite simple members

نویسنده

  • Hiroki Takamura
چکیده

In this paper, we prove that the variety of modal FLew-algebras is generated by its finite simple members. The result is obtained by showing that every free modal FLew-algebra is semisimple and then showing that every variety generated by a simple modal FLew-algebra is generated by a set of finite simple modal FLew-algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity

This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...

متن کامل

Semisimplicity, Amalgamation Property and Finite Embeddability Property of Residuated Lattices

In this thesis, we study semisimplicity, amalgamation property and finite embeddability property of residuated lattices. We prove semisimplicity and amalgamation property of residuated lattices which are of purely algebraic character, by using proof-theoretic methods and results of substructural logics. On the other hand, we show the finite model property (FMP) for various substructural logics,...

متن کامل

The Variety of Residuated Lattices is Generated by its Finite Simple Members

In this paper, we will show that the variety of residuated lattices is generated by finite simple residuated lattices. The “simplicity” part of the proof is based on Grǐsin’s idea from [5], whereas the “finiteness” part employs a kind of algebraic filtration argument. Since the set of formulas valid in all residuated lattices is equal to the set of formulas provable in the propositional logic F...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity

This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...

متن کامل

Product preservation and stable units for reflections into idempotent subvarieties

We give a necessary and sufficient condition for the preservation of finite products by a reflection of a variety of universal algebras into an idempotent subvariety. It is also shown that simple and semi-left-exact reflections into subvarieties of universal algebras are the same. It then follows that a reflection of a variety of universal algebras into an idempotent subvariety has stable units...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006